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THE BIGGER PICTURE Bias in the medical field can be dissected along three directions: data-driven, algo-
rithmic, and human. Bias in AI algorithms for health care can have catastrophic consequences by propa-
gating deeply rooted societal biases. This can result in misdiagnosing certain patient groups, like gender
and ethnic minorities, that have a history of being underrepresented in existing datasets, further amplifying
inequalities.
Open science practices can assist in moving toward fairness in AI for health care. These include (1) partici-
pant-centered development of AI algorithms and participatory science; (2) responsible data sharing and in-
clusive data standards to support interoperability; and (3) code sharing, including sharing of AI algorithms
that can synthesize underrepresented data to address bias. Future research needs to focus on developing
standards for AI in health care that enable transparency and data sharing, while at the same time preserving
patients’ privacy.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

Artificial intelligence (AI) has an astonishing potential in assisting clinical decision making and revolutionizing
the field of health care. Amajor open challenge that AI will need to address before its integration in the clinical
routine is that of algorithmic bias. Most AI algorithms need big datasets to learn from, but several groups of
the human population have a long history of being absent or misrepresented in existing biomedical datasets.
If the training data is misrepresentative of the population variability, AI is prone to reinforcing bias, which can
lead to fatal outcomes, misdiagnoses, and lack of generalization. Here, we describe the challenges in
rendering AI algorithms fairer, and we propose concrete steps for addressing bias using tools from the field
of open science.
INTRODUCTION

Despite the astonishing potential of artificial intelligence (AI) in

health care, its regular use in the clinical routine comes with

several ethical and societal challenges. As a notable example,

one of themost frequentmedical therapies is oxygen administra-

tion, whose levels in the blood are measured through a pulse

oximeter.1 The pulse oximeter measures oxygen saturation by

sending infrared light through the skin. Measurements of the

pulse oximeter are known to be affected by the patient’s skin co-

lor, as the device systematically overestimates oxygen satura-

tion levels in nonwhite patients.2 As a result, Black patients are
This is an open access article und
three times more likely to suffer from an occult hypoxemia that

remains undetected by pulse oximeters compared with white

patients.1 As highlighted by this example, disparities in health

care may start at the level of clinical measurements, which can

ultimately shape erroneous medical decisions for entire patient

groups, and can be amplified with the development of AI

technologies.

AI promises to provide data-driven approaches to support

clinical decision making and public health policymaking, gradu-

ally benefiting the health of society. Deep neural networks have

generated substantial advances in medical imaging and preci-

sion medicine. In contrast to more ‘‘traditional’’ machine learning
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Figure 1. Illustration of different sources of
bias in training machine learning algorithms
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approaches, deep neural networks rely on propagating an input

signal through multiple layers of transformations.3 This results in

the extraction of more complex patterns of information from the

input signal than simpler techniques are typically able to reveal.

As the amount of data in the biomedical field constantly in-

creases, the use of deep learning has also seen a vast increase,

as deep neural networks are particularly powerful in extracting

information from large datasets.4

In one of many examples, in the field of dermatology,

convolutional neural networks (CNNs) are able to classify images

of skin lesions as accurately as trained dermatologists.5 Notably,

CNNs have even been found to be superior to dermatologists in

melanoma image classification.6 In cardiology, machine learning

has been proposed for developing risk assessments and per-

forming predictions of cardiovascular events.7 In sleepmedicine,

deep learning can automate sleep scoring, a tedious task that is

otherwise manually performed.8 Similar applications also have

been reported in the fields of neurology, radiology, and pathol-

ogy.9,10 Apart from an important role in diagnostics, AI also has

applications in drug discovery and development, where it could

be used to identify drug-drug interactions and to develop

personalized treatments.11 AI systems could also help reduce

health care costs, predict patients’ no show, or shorten hospital

waiting times by searching millions of medical records.12 Our

goal with this article is to focus on the question of AI and fairness

in relation to bias in health care, and examine how open science

tools can help address it. We start with an overview of known

sources and examples of bias in themedical field. We then focus

on data bias, and outline the main open challenges that need to

be addressed from an algorithmic, medical, and societal point of

view. Last, we offer recommendations for future directions, high-

lighting the role of open science in addressing bias in AI.

AI AND BIAS IN MEDICINE

Bias can be defined statistically and socially. Statistically, bias

refers to cases in which the distribution of a given dataset is

not reflecting the true distribution of the population. Statistical

bias can cause an algorithm to produce an output that differs

from the true estimate.13 Social bias, by contrast, refers to ineq-

uities that may result in suboptimal outcomes for given groups of

the human population.12 The medical field is no stranger to bias,
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which oftentimes is hard to quantify and

detect (see Figure 1 for an overview). To

date, there have been numerous reports

of algorithms that discriminate against

vulnerable groups in the same fields in

which AI has shown promising results.

In one of many examples, CNNs that

provide high accuracy in skin lesion classi-

fication6 are often trained with images of

skin lesion samples of white patients, using

datasets in which the estimated proportion

of Black patients is approximately 5% to
10%.14 As a result, when tested with images of Black patients,

the networks have approximately half the diagnostic accuracy

compared with what their creators originally claimed.14 Black

patients, whose lesions may have different characteristics from

white patients, may thus be less likely to be accurately diag-

nosed by automated algorithms. This omission should not be

taken lightly, as Black patients have the highest mortality rate

for melanoma, with an estimated 5-year survival rate of only

70%, versus 94% for white patients. Misdiagnoses and socio-

economic barriers hindering access to health care may cause

skin cancer at a more advanced stage in Black patients, hinder-

ing treatment.15

Racial bias in health care results in some groups of patients

getting better medical treatment than others. In another

example, AI algorithms used health costs as a proxy for health

needs and falsely concluded that Black patients are healthier

than equally sick white patients, as less money was spent on

them.16 As a result, these algorithms gave higher priority to white

patients when treating life-threatening conditions, such as dia-

betes and kidney disease, even though Black patients have

higher severity indexes.16

The Coronavirus Disease 2019 (COVID-19) has proven how

biased AI systems amplify existing inequalities, placing vulner-

able populations at a higher risk of severe illness and death.17

AI is used in the fight against COVID-19, but because of the

time pressure to develop concrete solutions against the

pandemic, AI might be likely to reinforce COVID-19–induced in-

equalities at scale, because its performance in vulnerable popu-

lations may not have been thoroughly tested.18

Algorithmic bias is not exclusive to race. Gender inequalities

also can be exacerbated by imbalanced algorithms. For

example, in cardiology, a heart attack is overwhelmingly mis-

diagnosed in women.19 Nevertheless, prediction models for car-

diovascular disease that claim to predict heart attacks 5 years

before they happen20 are trained in predominantly male

datasets. As cardiovascular disease has different patterns of

expression in men versus women,21 an algorithm that has

been trained predominantly with data samples of men may not

be as accurate in diagnosing women.

Another interesting area for AI in medicine is the quest for auto-

matedsleepscoringalgorithms.Since the1960s,manyalgorithms

have been developed, reaching very good perfomances,22 but

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
https://time.com/collection/davos-2020/5764698/gender-data-gap/
https://time.com/collection/davos-2020/5764698/gender-data-gap/
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when used in a clinical routine they fail miserably. Being trained on

young healthy individuals, automated algorithms are often unable

to decrypt sleep disorders in older patients. Thanks to bigger and

more heterogeneous datasets, automated sleep staging has

improved, but we are still far from acceptable performance when

validation is done on new datasets or unseen sleep disorders. In

sleep scoring, training of AI algorithms is done utilizing visual

scoring labels as gold standards. Cognitive biases can lead to

poor inter- (70%–80%) and intra- (90%) scoring agreement.23

This intrinsic limit could be overcome by AI, as its use neutralizes

external sources of variance like human expert variability, offering

a uniform standardized solution.8

Bias is concerning in areas where the lack of variability in

training data is harder to identify at an early stage, such as

drug development and clinical trials. In the case of clinical trials,

the majority of participants are male, of a limited age group, and

from similar ethnic backgrounds.24 Preclinical studies are also

affected by gender bias, as they typically include either a vast

majority, or exclusively male animals,25 which resulted in the

NIH issuing guidelines to balance the ratio of male/female ani-

mals.26 Gender biases during the preclinical stages of drug

development could alter how women react to newly developed

drugs.27 The results of drug behavior, side effects, and effective-

ness from such early studies may in turn be transferred into the

datasets that are then used to train AI algorithms.

Data limitations are a critical issue that can result in bias

(Figure 1), but the lack of diversity in clinical datasets is not the

only source of bias. Researchers and clinicians can also impute

unconscious judgments and biases into their research (Figure 1),

thus deploying AI algorithms that are biased by design. If ethical

issues are not addressed before further implementation of algo-

rithms in the clinical practice, AI might fail to deliver benefits to all

patients, increasing health inequities.

MOVING TOWARD FAIRNESS IN AI: CURRENT
CHALLENGES

Bias
Sources of bias in AI may be present in most, if not all, stages of

the algorithmic development process. Algorithmic bias can

emerge due to the use of imbalanced or misrepresentative

training data, the implementation of data collection systems

influenced by human subjectivity, lack of proper regulation in

the design process, and replication of human prejudices that

causes algorithms to mirror historical inequalities.13

Vulnerablegroupshavea longhistory ofbeingabsentormisrep-

resented in existing datasets. When AI algorithms are trained with

datasets inwhich vulnerable groups are notwell represented, their

predictive value may be limited. Algorithmsmay be able to detect

patternsspecific to themajority groups that theywere trainedwith,

but they may have poor performance in recognizing patterns that

are present in patient groups that were never seen during training.

As an example, skin cancer has a strong genetic component.15 If a

diagnostic algorithm is only trained with genetic data of white pa-

tients, it may fail to generalize to patients of other ethnicities.

More generally, if AI is used as a diagnostic or therapeutic

approach in patients who are invisible in the datasets that AI

algorithms are trained with, these may fail to diagnose or treat

entire patient groups, such as ethnic and gender minorities, im-
migrants, children, the elderly, and people with disabilities.

These failures for certain population groups can be hard to

recognize during the early training and testing phases of AI

deployment, unless they are specifically sought after.

Sources of bias

Data-driven bias. Most fields of human research are heavily

biased toward participants with aWestern, Educated, Industrial-

ized, Rich, Democratic—WEIRD—profile,28 and are not repre-

sentative of the human population as a whole. As several of

the available datasets that are used to train AI algorithms were

collected in the context of scientific studies, they in turn are

biased.

Oftentimes, the quantification of certain forms of bias in a

given dataset is relatively straightforward, as the data samples

carry features that reflect the characteristics of bias. For

example, bias due to ethnicity could be inferred from a dataset

of skin samples, or bias due to gender or ancestry can be in-

ferred from genetic data. However, in many cases it is impos-

sible to quantify biases in the composition of a dataset. For

instance, biases due to socioeconomic status or sexual orien-

tation are often impossible to infer in a biomedical dataset un-

less this information has been explicitly collected and included

as metadata.

Although variables andmetadata that do not directly apply to a

given research questionmay seem irrelevant for quantifying bias,

there is strong evidence that suggests the contrary. For instance,

several neuroscience studies have shown that socioeconomic

variables are associated with detectable differences in brain

structure29 and functions.30 To be able to assess the influence

of socioeconomic variables in neurological data, future studies

will need to start collecting homogenized metadata correspond-

ing to factors that may induce bias.

As an example of data-driven bias and data gaps, polygenic

risk scores use data from genome-wide association studies

(GWAS) to calculate a person’s inherited susceptibility for a dis-

ease. Although polygenic risk scores have a great potential as

predictive biomarkers, 81% of GWAS studies are conducted in

individuals of European ancestry.31 This affects the generaliz-

ability of polygenic risk scores across different populations and

can result in biased predictions and further inequities in health

outcomes.

Algorithmic bias. When an algorithm is trained on biased data,

it is likely to reinforce patterns from the dominant category of the

data it was trained with. In the simplest case, when an algorithm

is trained to classify a dataset consisting of 80% healthy and

20% diseased images, just by predicting every sample as

healthy, the algorithm will achieve a performance of 80% accu-

racy. Alternative metrics should therefore be used that are at-

tuned to class imbalance, such as the F1 score. This can be

defined as follows:

F1 =
TP

TP+ FP+FN
2

where TP = true positive, FP = false positive, and FN = false

negative. In the above-mentioned example of an imbalance

dataset, this would result in a score of 0. Therefore, the F1 score

could be a more reliable and intuitive metric in the case of imbal-

ance datasets.
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Having objective ways to estimate chance levels is crucial to

avoid misinterpretation of findings. Permuting the labels of the

available samples and retraining an algorithm to give ‘‘random’’

predictions can provide an empirical estimation of chance

levels.32 This should be combined with performance metrics

that are not affected by imbalanced datasets,33 or with classifi-

cation techniques that include weight factors that take into ac-

count in the algorithms’ optimization step the fact that some

classes are imbalanced.33

Moreover, algorithms that mitigate bias can be usedwhenever

possible. To increase algorithmic fairness, protected attributes,

such as gender or ethnicity, can be included during training in

order to ensure that algorithmic predictions are statistically inde-

pendent from these attributes.34 Alternatively, loss functions can

be defined per protected group, and may be forced to remain

below a certain level for all defined groups, so that no single

group is systematically misclassified.34 Similar approaches

have been introduced in different AI frameworks, such as in the

case of adversarial learning,35 and are summarized in open-

source toolkits that can be used to mitigate algorithmic bias.36

Human bias. As AI algorithms are designed by humans, they

may often reflect human biases. Algorithms are often designed

to tackle what their developers consider the most urgent prob-

lems to solve, which are not necessarily the same challenges

faced by the individuals that are concerned by those algorithms.

Lack of diversity in engineering and biomedical teams can repli-

cate unconscious bias and power imbalances.37

Human bias in AI can be one of the hardest ones to detect and

mitigate, as it can result from long-held societal prejudices that

may be subtle at the level of society, and amplified by AI and

large datasets. The medical field has several examples where

racial, gender, or age disparities are affecting clinical decision

making, quality of treatment, and outcome prognosis.

It is well documented that Black patients have lower survival

rates compared to white patients for different cancer types.38

Although mortality rates from cardiovascular disease have

majorly decreased over the past 10 years, Black patients had

higher mortality rates in 2017 compared with the mortality rate

that white patients had back in 2007.39 Similar trends are seen

for patients suffering from depression, with ethnic minorities

experiencing more severe symptoms and receiving medication

less often than white patients.40

Apart from race, also gender results in bias and unequal treat-

ments. Historically, women have been regarded as the ‘‘smaller’’

version ofmen, andmedication dosageswere adjusted for patient

size, without taking into account sex differences.41 In health care,

sex differences can be substantial and include differences in

gene expression,42 or in the prevalence, age, onset, symptom-

atology, morbidity, and mortality of life-threatening diseases,

such as coronary heart disease,43 stroke, and different types of

cancer.44 Comparedwithmen,womenaremore likely to have their

pain levels underestimated by clinicians.45 Moreover, nonhetero-

sexualwomenexhibit higher risk factors for certain formsofcancer,

cardiovascular disease, or mental health, despite generally higher

socioeconomic status than heterosexual women.46 Individuals

who are lesbian, gay, bisexual, transgender, transsexual, two-

spirit, queer, or questioning (LGBTQ+) are particularly affected by

inequalities in health care, which arise due to particular needs for

treatment47 and due to bias in health care practitioners.48
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Data gaps
Over the past decade, governments, funders, and institutions

have worked together to promote open data sharing. As a result,

the world has access to public datasets to train AI algorithms,

but most of them are not diverse, disaggregated, and interoper-

able.49 Data repositories have substantially increased the num-

ber of open datasets available to train and develop algorithms,

but vulnerable populations remain underrepresented in health

care data. This lack of diversity restricts the utility and generaliz-

ability of the datasets and the AI algorithms trained with them. In

addition, lack of consistency and coherency, differences in

formatting, and limited data disaggregation prevent open data-

sets from being intermixed and used to power large, complex

systems.

Developing inclusive technologies relies on counting people

in, but gaps in data tend to leave certain groups unnoticed.

When minority groups are invisible in datasets used to deploy

AI algorithms, their needs and phenotypes may become invis-

ible. As an example, commercial, and also open genomic data-

bases, like the Personal Genome Project, contain data that are

in their vast majority of European origin.49 The lack of genetic

data for large parts of the human population might hinder the

development of biomarkers and treatments for conditions with

a heavy genetic component.

To characterize datasets, it is important to collect comprehen-

sive metadata. As an example, despite numerous initiatives to

include sexual orientation and gender identity in electronic health

records, to date this information is largely missing.50 In the vast

majority of medical records it is thus impossible to identify

LGBTQ+ individuals, who experience health disparities, and

may have unique health care needs. Moreover, information

related to the researchers or clinicians who collected certain

metadata is also oftenmissing, and its importance is ignored. La-

bels associated with medical data, disease rating scales, and

diagnosis may be imbued with cognitive biases of the health

care personnel who collected this information.51 Personality

traits like tolerance to risk, or overconfidence may result in diag-

nostic, therapeutic, or management errors, and may impact

patient outcomes.44

Data standards and interoperability
Standardization makes data interoperable and impactful. When

data are not openly available and are published in inconsistent

and incompatible formats, it becomes difficult to exchange,

analyze, and interpret them. Inconsistency in data sharing,

variability in data quality, and different levels of data usability

determine whether or not researchers get access to high quality

training datasets for fair AI.52

Importantly, several of the underlying datasets that power AI

algorithms were not built for this purpose. As a result, the data

standards (or lack of) applied to these datasets limit the potential

of the algorithms that are trained with them. This is a major lim-

itation in many of the datasets published in data science web-

sites, such as Kaggle, where binary gender fields, incomplete

gender disaggregation, and incompatible formats make it diffi-

cult to not only build inclusive AI, but also to test for biases.

Apart from formatting, data standardization can encourage

patient groups to capture their characteristics in a way that

facilitates readability and interoperability. For data standards to

https://www.opengovpartnership.org/stories/open-algorithms-experiences-from-france-the-netherlands-and-new-zealand/
https://qz.com/765879/23andme-has-a-race-problem-when-it-comes-to-ancestry-reports-for-non-whites/
https://www.rockefellerfoundation.org/blog/inclusive-ai-needs-inclusive-data-standards/
https://www.rockefellerfoundation.org/blog/inclusive-ai-needs-inclusive-data-standards/
https://www.kaggle.com/


Figure 2. Illustration of open science tools
that can help address bias in AI
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reflect those who are ultimately impacted by their adoption,

broad and active participation frommembers of different sectors

and communities is required during all steps of their design

process.

To become interoperable, datasets need to track andmeasure

inclusivity, have the possibility to exchange samples, and have

clear structures that are capable to support multiple systems.

Creating data standards is a complex process, but also a

mandatory point of passage for training fair AI algorithms. In

the fast-paced field of AI, it sometimes might be better to adopt

existing standards instead of creating completely new ones.

MOVING TOWARD FAIRNESS IN AI: A CALL FOR OPEN
SCIENCE

The fair implementation of AI in health care requires integrating

principles of inclusivity, openness, and trust in biomedical data-

sets by design. The idea of openly sharing multiple facets of the

research process, including data, methods, and results under

terms that allow reuse, redistribution, and reproduction of all

findings gave birth to open science, a practice that is strongly

supported by several institutions and funding agencies.

Although open science is a wide term that encompasses

several practices, recent attempts have framed open science

within a framework of inclusivity, such that no science can be

open unless it is inclusive by design. This inclusivity aspect,
along with the well-established advan-

tages of increasing scientific rigor, trust,

and use of resources, make open science

suitable for increasing algorithmic fairness

in the biomedical field. Openly sharing the

entire research process along with its re-

sults incentivizes participation and helps

remove key barriers that prevent members

of vulnerable or underrepresented groups

from being part of the global scientific

community. This can be achieved across

several axes (see Figure 2 for a summary

illustration).

Sharing data increases inclusivity
During the recent years, the value of openly

sharing health care data has becomemore

evident than ever, with researchers, gov-

ernments, and nongovernmental organiza-

tions worldwide implementing open data

sharing practices to quantify and respond

to health emergencies.53 The millions of

data points being shared have accelerated

the development of cutting-edge AI tech-

nology for epidemiologic, diagnostic, and

therapeutic interventions. Although health

care data are necessary to advance medi-

cine, they contain sensitive information
that needs to be safeguarded for privacy reasons.54 It is not

enough to simply code the name and surname of a patient to

ensure anonymity. In one ofmany examples, electroencephalog-

raphy signals, which are typically considered anonymous, can

be used as a biometric identifier.55 Therefore, new anonymiza-

tion processes must be conceived. Responsible data sharing

frameworks designed with openness at their core that also pro-

tect the individual’s rights to privacy are needed for health care

data. One example of such a framework is the federated learning

systems, which enable the training of AI algorithms at a local

level, allowing individuals to maintain control and anonymity of

their data.56

Inclusive health data standards to support

interoperability

Data standards lead to efficient data infrastructure and support

interoperability. Shared formatting, language, and data identi-

fiers make information scalable, while comprehensive metadata

descriptions enhance the discoverability of communities and

concepts.57

Fair biomedical data standards cannot be developed in

isolation, and require constant feedback from patient or com-

munity representatives.58 However, creating standards from

the ground up is a complex process; therefore, the adoption

of existing health data standards is advised. A number of

existing health data standards are recommended by health au-

thorities, such as Health Level 7, the International Organization
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for Standardization (ISO), and OpenEHR, among others.58 In

addition, the Open Standards for Data Guidebook provides a

general introduction to open data standards for data, making

it easier to find and adopt existing standards and, when neces-

sary, create new ones.

Generating synthetic data to combat bias

Oftentimes, despite the best intentions, it is impossible to

have unbiased datasets. Questions of privacy, anonymity,

and trust may obstruct the participation of underrepresented

groups in data sharing initiatives. To overcome this limitation,

the field of machine learning has several tools, such as

Generative Adversarial Networks,59 that can be used to artifi-

cially generate synthetic data and augment underrepresented

classes, such as skin lesion images.60 This can allow neural

networks to be trained with more samples of data that

may be underrepresented, such as data of ethnic minorities.

Future studies can evaluate the efficacy of this approach

in decreasing the rates of misclassified samples of

underrepresented groups.

Sharing inclusive AI algorithms
Sharing data is not always feasible or desirable due to questions

of privacy and security. Thus, sharing code and retraining exist-

ing algorithms with data collected at a local level, for example in

hospitals across the globe, can circumvent the lack of diversity in

existing openly shared datasets.

Opening up the source code of AI algorithms can accelerate

algorithmic development by allowing scientists and engineers

to extend, reuse, and validate shared code. Open-source prac-

tices facilitate collaboration, making code and algorithms acces-

sible to anyone, including members of sensitive groups.61

Openly sharing AI algorithms in a comprehensive way contrib-

utes to computational transparency and interoperability.

Sharing code can empower individuals to evaluate the perfor-

mance of novel AI algorithms on different datasets. This can

allow researchers from all around the globe to test whether a

given algorithm, developed, for example, in Europe predomi-

nantly with data of white patients, generalizes to data of patients

in Asia or Latin America. Sharing code can enable local research

communities to validate and fine-tune existing neural networks

for the needs of their local patient groups, resulting in a distrib-

uted model for training future AI algorithms.

Evaluating algorithmic efficiency and fairness

Field-testing can give researchers the opportunity to assess the

performance of algorithms in different population groups and

clinical settings.62 Given the ethical implications of AI in medi-

cine, AI algorithms should be evaluated as rigorously as other

health care interventions, like clinical trials.63 Open science prac-

tices that encourage transparency, like preregistration for AI

studies, need to become the norm before these can be used to

diagnose or treat a specific patient group. Moreover, transparent

guidelines like the Good Evaluations and Practices for Health

Informatics, can guide users through a multistep process to

control for issues that may arise during different stages of

algorithmic design and implementation.64

The limitations of AI algorithms that can be identified through

such investigations should be transparently communicated to

clinicians and policymakers. This can ensure that AI algorithms

can be applied to the populations they have been tested on.
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Common metrics for AI reliability

Another important issue is related to the inconsistency and limits

of the metrics adopted for assessing AI reliability. The adoption

of common standardized metrics should be strongly favored,

and the clinical perspective should be considered in algorithmic

applicability and interpretability. Whenever possible, the metrics

should not only focus on the numerical accuracy, but also

include quality of care and patient outcomes.65

Explainable AI models

A direction that AI algorithms will need to consider is that of

explainable AI. Several powerful AI algorithms are employing a

so-called ‘‘black box’’ approach, where it is difficult or even

impossible to understand how the obtained results have been

achieved.66 Explainable AI by contrast includes interpretable AI

models, where the strengths and weaknesses of a decision-

making process are transparent.67 AI applications often have

to deal with a trade-off between model performance and inter-

pretability. On the one hand, simple models, such as linear

classifiers or decision trees, are generally interpretable but often-

times lead to suboptimal performance. On the other hand, more

complex models like deep neural networks provide high classifi-

cation performance, but identifying the features that drive an

accurate classification can be cumbersome and oftentimes

impossible.

Feature interpretability, together with a strong performance are

prioritized in explainable AI models. In explainable AI, the features

that a model is using tomake a decision need to be traceable and

understandable by a human. As an example, transparent tech-

niques like decision trees, relying on interpretable features, can

provide a ‘‘white-box’’ approach for diagnosis.68

The field of computer vision has dedicated a substantial effort

in obtaining interpretable features and understanding the pro-

cess of classification.69 For example, the kernels or intermediate

features of a trained neural networkmay shed light on the learned

structure in different layers of the network, giving rise tomethods

like class activation mapping (CAM).67 Other methods are

gradient based, like saliency maps,68 and calculate the contribu-

tion of each input pixel to the overall classification performance.

The combination of these two approaches has given rise toGrad-

CAM,70 which allows the identification of regions of interest in the

input data that mostly influenced the network’s decision. These

approaches can be integrated in the future with existing algo-

rithms and datasets, so that features driving a network’s decision

can be potentially shared together with the data used to train the

network in order to increase transparency.

Participant-centered development of AI algorithms
An important component of open science that can be a strong

asset in the fight against bias in AI applications is participatory

science. Participatory science involves scientists and nonscien-

tists working together toward the creation of scientific knowl-

edge.71 Participatory science can be used in the development

of novel AI algorithms to actively include individuals who are con-

cerned with the applications of a given algorithm, like specific

patient groups. When members of underrepresented groups

are actively engaged in science, they can contribute to the iden-

tification of bias against their communities, and with solutions to

increase their representations in the datasets used to develop AI

algorithms.61

https://www.openehr.org/resources/white_paper_docs/openEHR_vendor_independent_platform.pdf
https://standards.theodi.org/about/
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Including communities (such as indigenous peoples, people

with disabilities, the LGBQ + community, immigrants, etc.) in

the design of data collection and AI deployment can ensure

that the outcomes that can be achieved from the design of AI

models directly benefit them. Moreover, the active engagement

of patient groups in AI deployment might reduce the propagation

of biases and misconceptions, and can help scientists evaluate

whether their research questions are equally relevant to patients

and groups that are traditionally underrepresented in science.

As a notable example, theOpenArtificial Pancreas (OpenAPS) is

a community-led initiative that designs openly accessible technol-

ogy for automatically adjusting insulin intake in patientswith type 1

diabetes, in order to keep blood glucose in a safe range.72 Open-

APS has resulted in patient-led data commons and in the genera-

tion of rich clinical datasets that may be used for patient-led

research, and have already resulted in several research studies.61

Participant-centered algorithms and datasets can be facili-

tated by community-based platforms specifically designed to

enable collection of personal data and give individuals the pos-

sibility to design novel study questions or algorithms that

concern themselves and their communities.61 Open Humans is

an example of such a platform that allows participants to share

their personal data, design their own research questions, and

also design and share their own algorithms. Open Humans takes

a participant-centered approach to data sharing, in order to

solve some of the challenges associated with data ethics, pri-

vacy, and patient involvement.61
CONCLUSIONS

Health care is being transformed by the growing number of data

sources that are constantly shared, collected, and implemented

into AI systems. Using AI for public good can help tackle some of

the world’s most pressing issues, including providing humanitar-

ian assistance and supporting emergency response. One

example of this is the United Kingdom’s National Health Service

Covid-19 contact-tracing app, which helped prevent between

100,000 and 900,000 Covid-19 infections from October to

December 2020.73 Organizations like Omdena and the Alan

Turing Institute are pioneers in developing ethical AI solutions

in a humanitarian context. From predicting climate risks, to

increasing transparency, and responding to epidemics, these or-

ganizations have proven that when AI is inclusive and fair, it can

be used in solving the world’s most pressing issues.

In order for new technologies to be inclusive, they need to be

accurate and representative of the needs of diverse populations.

Algorithmic and human bias, along with information gaps and

lack of data standards, common metrics, and interoperable

frameworks pose the biggest threats to move toward fair AI. Im-

plementing the principles of open science into AI design and

evaluation tools could help strengthen collaborations between

the AI and medical fields, and open up the space for diverse

voices to participate in AI deployment for medicine.
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